Multiple Relative Pose Graphs for Cooperative Mapping

نویسنده

  • John Leonard
چکیده

This thesis describes a new representation and algorithm for cooperative and persistent simultaneous localization and mapping (SLAM) using multiple robots. Recent pose graph representations have proven very successful for single robot mapping and localization. Among these methods, iSAM (incremental smoothing and mapping) gives an exact incremental solution to the SLAM problem by solving a full nonlinear optimization problem in real-time. In this paper, we present a novel extension to iSAM to facilitate multi-robot mapping based on multiple pose graphs. Our main contribution is a relative formulation of the relationship between multiple pose graphs. Our formulation avoids the initialization problem and leads to an efficient solution when compared to a completely global solution. Efficient access to covariances at any time for relative parameters is also provided, facilitating data association and loop closing. Each individual pose graph still uses a global parameterization, so that the overall system provides a globally consistent multi-robot solution. The performance of the technique is illustrated on a publicly available multi-robot data set as well as other data including a helicopter-ground robot combination. Thesis Supervisor: Prof. John Leonard Title: Professor of Mechanical and Ocean Engineering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6-DOF Multi-session Visual SLAM using Anchor Nodes

This paper describes a system for performing multisession visual mapping in large-scale environments. Multi-session mapping considers the problem of combining the results of multiple Simultaneous Localisation and Mapping (SLAM) missions performed repeatedly over time in the same environment. The goal is to robustly combine multiple maps in a common metrical coordinate system, with consistent es...

متن کامل

Real-time 6-DOF multi-session visual SLAM over large-scale environments

This paper describes a system for performing real-time multi-session visual mapping in large-scale environments. Multi-session mapping considers the problem of combining the results of multiple simultaneous localisation and mapping (SLAM) missions performed repeatedly over time in the same environment. The goal is to robustly combine multiple maps in a common metrical coordinate system, with co...

متن کامل

A General Framework for Multi-vehicle Cooperative Localization Using Pose Graph

When a vehicle observes another one, the two vehicles’ poses are correlated by this spatial relative observation, which can be used in cooperative localization for further increasing localization accuracy and precision. To use spatial relative observations, we propose to add them into a pose graph for optimal pose estimation. Before adding them, we need to know the identities of the observed ve...

متن کامل

An Infrared Location System for Relative Pose Estimation of Robots

In this work we present an infrared location system for relative pose (position and orientation) estimation in a multi-robot system. Pose estimates are essential for tasks like cooperative simultaneous localization and mapping (C-SLAM), and formation control. In simultaneous localization and mapping (SLAM) relative pose estimates enable more accurate and less time-consuming map building. Respec...

متن کامل

Cooperative Multi-Robot Control for Target Tracking with Efficient Switching of Onboard Sensing Topologies

Using multiple robots to track a moving target is potentially beneficial because of the reduction in tracking uncertainty, increased coverage, and robustness to failure. Two problems arise immediately. First, these objectives are often at odds (e.g., the configuration of the robots that lead to the lowest uncertainty estimates of target pose may not be the best if one or more robots is disabled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010